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I. INTRODUCTION 

1 
While Grubbs discusses linear statistical regression and functional 

relations in a general way in BRL Report No. 1842, Taylor and Moore 
explain in BRL Report No. 1986 the use of Scheffe's theorem3 in providing 
simultaneous confidence bounds for a polynomial in the set-up of a 
general linear hypothesis model where the design matrix X is of full 
rank. The aim of the first report was, as it appears, to provide an 
introduction to the subject of linear regression and that of the second, 
to make Scheffe's theorem3 accessible to the general reader in the set- 
up of a nonsingular design matrix X. In this context, one may also 
like to know how Scheffe's theorem could be used when the design matrix 
is singular. This is important, since most of the Experimental Design 
Models are characterized by singular matrices. In the perspective of 
using Scheffe's theorem when the design matrix X is singular, it may 
also be of interest to know how the basic results under the general 
linear hypothesis model of full rank would extend to the situation 
when the design matrix X is singular. With this objective in mind, some 
of the relevant results which are very basic in the theory of singular 
designs are brought together in this report paving the background with an 
explanatory introduction to the solution of linear equations as related 
to the concept of a generalized inverse (g-inverse). 

II. THE GENERAL LINEAR HYPOTHESIS MODEL OF FULL RANK 

A.  Characterization of the Linear Model 

Suppose a set of Cp-1) mathematical variables, x,, x0, .... x , 
12'    p-1 

are related to a random variable y which is observed with an unknown 

random error e in the following manner. 

y = 30 + 3^ + 32x2 + .... + Pp.^j + e CD 

Grubbs, F. E., "Linear Statistical Regression and Functional 
Relations," Ballistic Research Lab Report No. 1842, AD #A018651, 
1975. 

2 
'Taylor, M.S., and Moore, J.R., "Confidence Bounds for the General 
Linear Model," Ballistic Research Lab Report No. 1986, 1977. (AD#A041035) 

Scheffe, H., "The Analysis of Variance," John Wiley S Sons, Inc., 
New York, 1959.   



where B. Cj = 0,1,2,... p-1) are unknown parameters (constants). Equa- 

tion (1), which is linear in the random variables, y and e, and the 
parameters, ^1, T7TJV_V  represents a linear model. When all 

the observations are taken in accordance with this model, observing a 
y for each set of the x's, the observational equations are expressible 

in matrix notation as 

y = X B + £ • (2) 

With n observations, y is an nxl column vector of the ^^/J I'. 
X=Cx..), (i = l,2,37...,n,  j = 0,1,2,...,p-1), is a known nxp matrix 

with x^. as its Ci,j)th element; B is a pxl vector of unknown parameters, 

B.Cj =:L0,l,2,...,p-l); e is an nxl vector of unobserved random errors, 

e. (i = 1,2,3,...,n). 

When Rank (X) = p, we say that the model is of full rank. In the 
analysis of such models we usually consider the following two cases con- 

cerning the distribution of £. 

Case 1: £ is distributed normally with mean 0 and covariance 

o2l    a2 >  0, where I is the nxn identity matrix.  (These assumptions are 
needed for tests of hypothesis and setting confidence bounds.) 

Case 2: £ has an unknown distribution with mean 0 and covariance 

a2I.  (These assumptions are referred to as the "Least Squares" assumptions.) 

B.  Some of the Basic Results Relevant to the Full Rank Model 

The normal equations to provide the least squares point estimate 

B^ of £ are given by 

(X'X)3 = X'y (3) 

=>  £ = (X'XrVy  . (4) 

The equations to provide the maximum likelihood estimate of^B for Case 1 

will be the same. The least squares point estimate a of a  (the same 
for maximum likelihood estimate, when adjusted for bias) is given by 

;2 = _i_ (y-xB)' (y-XB) = ^ [y'y-i'x'y] .    (5) 

The estimates B and a2 are unbiased. That is E(B) = B., E(a ) = a , 
where the symbol E stands for mathematical expectation. The least squares 



estimate ^'3^ of V&_,  where _£ is any pxl vector of constants, is given by 

and the variance of A'3 by 

fc'B = A'CX'X)"1 X'y (6) 

Var ivi)  = cA'CX'X)"1^   . (7) 

In particular, l}  may be any given observation vector (1,  x,,   ..., x    ,). 

Under the assumptions of Case 1, £ has the multivariate normal distribu- 
2 -1 

tion with mean 3, and variance a S , where S = (X'X). 

C. Estimation of a Parametric Function When the Design Matrix is Singular 

When the design matrix X is of full rank, that is, when Rank (X) = p, 
we can provide, as noted above, an estimate for each element of 3, and 

therefore, also an estimate £/£ for V&_,  for any pxl vector JL However, 
when the design matrix X is not of full rank, that is, when Rank CX) = r, 
r<p, implying that Rank (X'X) = r, we cannot provide unique solutions to 
the normal equations (3). Unique solutions given in (4) require a 
regular inverse of (X'X). Since (X'X) is not of full rank, we cannot 
compute a regular inverse. None-the-less, the normal equations (3) 
can still be solved, and some of the results given in the proceeding 
section can still be obtained in analogous forms by using what is called 
a generalized inverse (g-inverse or a pseudo-inverse) of the matrix 
(X'X). In order to make this report self-contained, we provide in the 
sequel an elementary introduction to the solution of numerical equations 
as related to the concept of a "generalized inverse" (g-inverse). 

When the model is of less than the full rank, we can provide 
unbiased estimates of some specific linear functions of the parameters. 
Such functions are called estimable functions. This brings in the defi- 
nition of estimability. 

A linear parametric function, ip = c'3 = c^-, + c03. + ... + c 3 . 
 ii   z z PP 

is said to be estimable, if and only if it has an unbiased linear estimate 

ty.    That is, there should exist an nxl vector a_, such that E(i|0 = 

E(a'£) = 4>, which in turn implies that a'X 3_ = c'£, for all 3^ Hence, 
£' should be of the form ji'X which is a row vector in the row space of X. 

D. Scheffe's Theorem 

We note here again that all linear parametric functions are uniquely 
estimable in the full rank model. In such a situation, we can think of 
p independent linear functions of the parameters given as ^K, ty,' '••» $ > 



forming what may be called a basis of the p-dimensional space L of the 
parametric functions. Thus, in the full rank model under Case 1, Scheffe's 
theorem on simultaneous confidence bounds will read as follows: 

Theorem 1: The probability is 1-a (where a is the size of the 
associated test of hypothesis) that the values of all parametric functions 
^ e L simultaneously satisfy the inequalities: 

J - SaJ < ^ < J + &J , (8) 

2 
where S = [pF     „ 1, F denoting Snedecor's F distribution with p 

"■J P> n"P /\       . ^  ^ 
and (n-p) degrees of freedom, and a*  is the estimated standard error of ^. 

If one is interested in a set of q Cq<p) independent parametric 

functions, ^'= ($.,   ..., ip ), S will change to [qF       ], making 
~ 1 Y Ln a; q, n-pJ'     6 

the confidence interval shorter. 

The likelihood ratio test which provides the simultaneous confidence 
bounds (8) for ty  provides simultaneous bounds also on all linear 

combinations of ^(i = 1, 2, ..., q), Vty =  cj), where £ is any qxl 

column vector of constants (see [3,8]). The corresponding theorem on 
confidence bounds will then read as follows: 

Theorem 2: The probability is 1-a (where a is the size of the 
associated test of hypothesis) that the values of all possible linear 
combinations, $, of the linear parametric functions simultaneously 
satisfy the inequalities: 

J - SaJ < <)) < J + SaJ (9) 
2 

where S = [qF       1 . L^ a; q, n-pJ 

In order to apply Scheffe's theorem in the context of a singular 
model, we need the following introduction to the solution of a system 
of linear equations as related to the concept and computation of the 
generalized inverse (g-inverse) of a matrix. 



III. ON THE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS 

A-  Necessary Operations Required to Solve Linear Equations with a 
Singular Coefficient Matrix. 

A system of n linear equations in n unknowns may be written as 

to. = Z (10) 

where the coefficient matrix A is an nxn matrix of known constants, x is 
a nxl vector of the unknown variables, and y is a vector of known constants, 

When Rank (A) = n, the solution of the equations is obtained as x = A"1y. 

When Rank (A) = p<n, A~ does not exist. But the system of equations may 
still have a solution, when the equations are consistent. Solutions for 
such a system of equations exist, when and only when Rank (A) = Rank (A:^), 
which, in turn, implies that jr lies in the column space of A. This 
provides, in fact, also the condition for consistency of the equations. 

In the general situation, the matrix A need not be a square matrix. 

Ax = ^ of equation (10) will be referred to as the homogeneous part 
of the system. As we know, to solve a system of equations, any one 
equation can be multiplied or divided by a constant (other than 0), 
and that any two equations may be added, or one equation may be sub- 
tracted from another without affecting the solutions. These operations 
on the equations may be performed by the appropriate operations on the 
rows of A and the corresponding elements of y. 

By premultiplying a given matrix by what is called an elementary 
BftjgJjE E> we can interchange any two rows, multiply a row by a non-zero 
scalar, or replace the i th row by the sum of the i th row and c times 
the j th row. These elementary matrices are obtained from the identity 
matrices of appropriate dimensions after performing corresponding opera- 
tions on the identity matrices. Let us suppose that A is of dimension 
3x3. The elementary matrices will then be obtained from the identity 
matrix I3 of dimension 3.  : 

The elementary matrix E, to interchange the first and second row 
of A will be given by 

E12 

r 
o i o 

10 0 

0 0 1 

E12 is obtained by interchanging the first and the second row of I 



The elementary matrix to multiply the second row o£ A b/ 3 will 

be given by 
"10 0 

E2(3) = 0 3 0 

0 0 1 

E2(3) is obtained by multiplying the second row of I3 by 3. 

The elementary matrix to replace the second row of A by the sum 
of the second row and (-3) times the third row will be given by 

E^C-S) 

10 0 

0 1-3 

0 0 1 

E  (-3) is obtained by replacing the second row of I3 by the sum of the 
second row and (-3) times the third row of 13 

If A is a pxp nonsingular matrix, we can reduce A to the identity 
matrix I by a finite number (say, t) of row operations on A. That is. 

Et Et-1 
E^A = I 
1    P 

Et Et_1 ... E1 = 
-1 

It is then observed that the product of the elementary matrices gives 
the inverse of A, when A is nonsingular. 

It may be pointed out that post-multiplication by the elementary 
matrices E obtained from the column operations on the identity matrix 
provides the corresponding column operations. 

B_  A Numerical Illustration of Solving a System of Linear Equations 
by the Sweep-out Method. 

Given below is a system of 3 linear equations in 4 variables. 
Here, the associated coefficient matrix A has 3 rows and 4 columns. 

10 



(1). Equations:    Xj + 2x2 + 3x_ + x. = 4 

4X. + 5x- + 6x- + 2x. = 5 12    3    4 

SXj^ + 13x2 + 18x- + 6x4 = 21 

Homogeneous i part Non-homogeneous part 

x, + 2x2 + 3x3 + x4 = 0 •    •    •    • =  4 

4X, + 5x2 ^ • 6x3 + 2x4 = 0 ■    •    ■    ■ 5 

8x1  + 13x2 + 18x3 + 6X, = 0 •    •    •    • = 21 

E32(-l). E31C-4) 

1  2 3 1 =  4 
4  5 6 2 

•    •    ■    • 5 
0  0 0 0 .  .  .  . 0 

E21C-4) 

1  2 3 1 •    •    «    • =  4 
0 -3 -6 -2 •    •    •    • = -11 
0  0 0 0 . 0 

E2(-l) 

1  2 3 1 •    •    •    • =  4 
0  3 6 2 •    •    •    • = 11 
0  0 0 0 •    •    •    • 0 

E2(l/3) 

1  2 3 1 
•    ■    •    • =  4 

0  1 2 2/3 •    •    •    • =  11/3 
0  0 0 0 •    •    •    • 0 

E12C-2) 

1  0 -1 -1/3 • = -10/3 
0  1 2 2/3 •    •    •    • = 11/3 

0  0 0 0 . 0 

11 



The method of elimination adopted above is sometimes referred to 
in literature as the method of "sweep-out." The method of "sweep-out" 
gives us a basis of the row space of A along with the solutions, if 
solutions exist. Solutions will exist, if when a row is swept out 
leaving O's as its elements, the corresponding element of y_ should also 
go to 0 in the "sweep-out" procedure. The "sweep-out" procedure,there- 
fore, gives us also a way of finding if the equations are consistent. 

The third row has been swept out, retaining only two equations in 
four variables. The first row could have been swept out, and the last 
two rows raised above, retaining the same form of the reduced coefficient 
matrix. The form is important.  It may be pointed out that other kinds 
of row operations could also have been performed, retaining the same 
form of the reduced coefficient matrix. Now, merely from an inspection 
of the non-zero part of the reduced coefficnent matrix, it is possible 
to find a solution vector of the homogeneous part, a vector that is 
orthogonal to a row of the reduced matrix. Such solutions are indicated 
below. 

(2) 

Basis 

Solns. 
shown as / 
rows  =*■ 

1 

0 

- 1 

L L 
1 
3 

Solutions of the Homogeneous Part 

Solutions shown as columns 

-1    -1/3 

2     2/3 

0 -1  -1/3 

1 2  2/3 

2-10 -1 

0 

0 

-1 

(3).  A Particular Solution of the Equations Ax = y 

xl = -10/3 

x2  = 11/3 

x3 = 0 

x4 = 0 

This comes from the nonhomogeneous part, and is obtained by adding two 
zeros to the reduced part of the vector y.  If there are four equations 
in two variables, we can assign arbitrary values to two of the variables, 
and solve uniquely for the remaining two variables.  In this case, zero 
values are assigned to the third and the fourth variables. 

12 



--r*. 

(4). 

Particular Solution 

General Solution 

+ 

Xl = 

X2 = 

x3 " 

x4 = 

-10/3 

11/3 

0 

0 

General Solution from the homogeneous part 

/ -1/3 V\ 
/      \ 

i  2/3 1 
+ y  .     i 

X, y being arbitrary scalars. 

included'irJt11^ ^ diffiC?lt t0 verify ho" ^11 possible solutions are 
Values of x ^H v^ 2eneral.solution. Suppose we want to find the 
values of x1 and x2 by assigning Cj to X3, c2 to x4, instead of 0's. 

This solution will then be given by writing X - -Cj, and y = -c . 

Each step taken in the elimination process shown above is 
equivalent to an elementary row operation provided by premultiplication 
with elementary matrices F frl u rvi S~      in.    *"««**«.Ap.i.icaixon ii-ax/ matrices, t^. (.cj, EiCKJ, etc. These elementary matrices 
are indicated prior to the steps taken. 

square fi I* SS?88^ a r0W O5.0,S ^ be added t0 ma^ the matrix A 
rnncl!/ ; ; ,  *   ^^espondingly, the vector y may be made to 
consist of 4 elements, with the fourth element as Tero. 

to r-^,,. ^Ji^l  B aS ^he Product of the elementary matrices required to reduce A to the standard form, it is obtained as        ^quirea 

B = E12C-2) E2Cl/33 E2(-l) B21(.4) Bj^-l) E^i-A)   1^ 

-5/3   2/3 0 

4/3  -1/3 0 

-4   -1 1 

.00 0 

where A is of dimension 4x4. 

0 

0 

0 1 

1 

13 



One may also introduce "economy" in the number of row operations 
or perform other row operations and get a different form for B. B has 
been obtained the same way as a regular inverse of A is sometimes obtained, 

when A is nonsingular.  B = A" is unique, when A is nonsingular.  But, 

B is not unique, when A is singular. Other forms of B could be found4 

reducing A to the above standard form. 

It may be verified that the particular solution, referred to 
above, is given by By;.  In this case, the last column of B is redundant, 
as it does not contribute to the solution. The last column of B has 
a unity in the fourth row, while the rest of the elements are O's, and 
y has a 0 in the fourth row. Omitting the fourth column of B, the re- 
maining 4x3 matrix can be taken as a g-inverse of A.  Calling it B, 
a solution for x is given by x = By. 

Although B is not unique, the particular solution By has a unique 
character.  It should be evident that the values of x, and x,, come from 

-1 
4 

5 

The values of Xj and x2 are unique.  If, for example, the first row were 

swept out, retaining the second and the third rows, the values of x, and 
X2 would have come from 1 

-1 
xl 

_X2_ 

= 
"4       5' 

8     13 

5 " 

21 

In both cases, x_ and The values of x^ and x- are the same as above, 

x4 are assigned zero values.  (This aspect of uniqueness of B^ is 

referred to later in this report.) 

C,  The General Solution in a Compact Form 

The general solution to the equations Ax = 2; can be written in a 
compact form as 

x = By + (H-I)z, (11) 

where H = BA, and £ is any arbitrary vector.  The first part of the 
4 
Banerjee, K.S., "Singularity in Hotelling's Weighing Designs and 
a Generalized Inverse," Annals of Math. Stat, 37, 4, 1021-31 
(1966).  (Correction note: Annals of Math. Stat.. 40, 2, 719.) 

14 



solution, B^, is what has been termed as the particular solution, while 
the second component is derived from the homogeneous part. As z is 
arbitrary, the above solutions may also be expressed as B^ + Cl~H)_z. We 
may adopt any one of these two forms.  We provide below a derivation of 
the compact form of the general solution by way of summarizing what has 
been done under the "sweep-out" operations. 

D.  The Derivation of the General Solution 

The second component of the general solution comes from the homogeneous 
part. We recall that a matrix B exists such that BA = H where H is of a 
particular form.  That is. 

Ax = 0 =* Hx = 0 

'P j ."12 

0  ' 0 
x = 0 The solutions are given by 

r H 12 

L n-pJ 
(12) 

Any column in the column space of (12) is also a solution. That is. 

r 
H 12 

n-p 

z 
-n-p 

is also a solution, where z^  is a vector of (n-p) elements. Also, 

LVp)xp] .in_pJ 

z 
"P 

-n-p _ 

- (H-I)z 

is a solution, where z is arbitrary.  Introduction of z adds 0 to the 
— ^p 

solution.  It may be noted that this whole part merely adds 0 to the 
R.H.S. of the equations. Ax = y. — 

The first component. By, of the general solution, called a 
particular solution, comes as follows: 

15 



Ax * ■ L 

o ' o 
BZ = 

[-^--1 0          0 [in-pj 

LVP, 

(13) 

where the suffixes attached to the column vectors indicate their dimen- 
sions.  (13) implies that 

x = y - H,-x 
-p  ^-p   12-n-p 

Since we can assign arbitrary values to the elements of the vector x 
can set it to 0^ to get a solution.  This solution has been termed ~n~p 

the particular solution, being given by 

we 

x 

x 
L-n-p. 

0 
L-n-pU 

BZ. 

Combining the two together, we get the general solution in the above 
form. 

IV. GENERALIZED INVERSES 

A.  Introductory Remarks 

It has been observed in the preceding sections that even when the 
rank of the coefficient matrix A is less than the full, we can find 
solutions to the system of equations, Ax = y, when the equations are 
consistent.  It has also been observed that B^ gives a solution, ta 
particular one), which is a component part of the general solution. 
Thus, B takes the place of the inverse of A, and may, therefore, be 
taken as a pseudo-inverse or, more generally, as a generalized inverse 
(g-mverse) of A.  Some authors designate an inverse such as B as a con- 
ditional inverse. There are, in fact, many other pseudo-inverses, or 
generalized inverses (g-inverses) depending on the properties the=e 
inverses satisfy. All of these generalized inverses are not unique, as 
we have shown for B. Only one of these inverses, the one due to 
Moore-Penrose, is unique. For this unique g-inverse, we shall reserve 
the symbol "t", while for other g-inverses, we shall use "-". 

16 



The following is an introduction to g-inverses. The material for 

the first part of this discussion is drawn from Rao , while that for the 

second part from Greville.  One may refer to these two references and 
7        8 4 

also to Price , Graybill and Banerjee for details and further insight. 

B.  A G-inverse That is Not Unique.  (See C. R. Rao ) 

Definition of g-inverse 

A generalized inverse (or g-inverse) of a matrix A of order mxn is 
a matrix of order nxm, denoted A", such that for any £ for which 
Ax = 21 is consistent, x = A~£ is a solution. 

Lemma 1.  If A is a g-inverse, then A A~A = A, and conversely. 

Choose £ as the i  column a. of A. Then, the equation Ax = £. is 

consistent, as a. lies in the column space of A. Hence, x = A"a. is a 

solution. That is, AA-^ = a  for all columns a. of A. This implies 

that A A A = A. Conversely, if A" exists such that A A" A = A, and 

Ax = 21 is consistent, then A A" Ax = Ax = ^ or A A" y = y. Hence, 

A y is a solution for Ax = ^ Thus, A" is, by definition, a g-inverse. 

Lemma 2. Let A"A = H for a given g-inverse A~. Then 

2 
(a).,. H = H; i.e., H is idempotent; 

(b).  AH = A. 

Proof of (a):  H2 = A" A A" A = A" A = H 

Proof of (b):  AH = A A" A = A 

Rao, C.R., "A Note on a Generalized Inverse of a Matrix with Appli- 
cations to Problems in Mathematical Statistics," J. Roy. Statist. 
Soc., B, 24, 152-158, 1962.  

Greville, T.N.E., "The Pseudo Inverse of a Rectangular or Singular 
Matrix and its Application to the Solution of Systems of Linear 
Equations," SIAM Review, Vol. 1, No. 1, pp. 38-43, Jan. 1959. 

7 
Price, CM., "The Matrix Pseudo Inverse and Minimal Variance 
Estimates," SIAM Review, Vol. 6, No. 2, 115-20, 1964. ——————— 

Graybill, F. A., "Theory and Application of the Linear Model," 
Dux bury Press, Massacuusetts, 1976. 
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Lemma 3- A g-inverse exists for any matrix A, although it may not 
be unique, and it can be constructed in such a way that it has A 
itself as a g-inverse.  In other words, it is possible to find A" such 
that A A A = A, and that A" A A" = A". 

Given a matrix A of order mxn and rank s, there exist non-singular 
matrices P and Q of orders m and n respectively, such that PAQ = A, or 

A * P" AQ"1, where 

0 

0 

and Ds is a diagonal matrix of order s and rank s, 

D i 
s i 

Let us define 
A = QA"P, where 

D"1!  0 
s I 

0 
i 

This A' satisfies 

(a). A A" A = A 

(b). A" A A" = A". 

Remark: If, in particular, A is a symmetric matrix, then Q = p'  It 
may also be pointed out the matrix P or Q can be obtained as a product 
ot the elementary matrices introduced earlier. 

Observation: 
6,7 

In order that that A" be unique. A" has to satisfy, it is 

known ; , the following two additional relationships; 

(c). (A A")  = A A" 

(d) . (A"A) ' = A" A. 

C  The Unique G-inverse  (See T. N. E. Greville6) 

For any matrix A, there exists, as referred to above, a unique 

g-inverse A such that 

18 



1. A A+ A    = A 

2. A+ A A+  = A+ 

3. (A A1)     = A AT 

4.    (A+ A)' = A+ A . 

D.  Unique G-inverse for Special Rectangular Matrices B and C 

1. If any matrix B is of dimensions nxm, (m < n), and of rank m, 
f 

then B is obtained as 

B+ = (B'B)"^' . (14) 

2. If any matrix C is of dimensions mxn (m < n), and of rank m, 

then C is obtained as 

t   '  • _i 
Cr = C (CC ) ^ . (15) 

E. Left and Right Identity Matrices for any General Matrix A. 

Let Rank (A) = r < m, and let B denote a matrix of r columns whose 
columns form a basis for the column space of A.  [In particular, B might 
be formed by selecting r linearly independent columns of A.] Also, let 
C be an r-rowed matrix whose rows form a basis for the row space of A, 
[C may be formed by selecting r linearly independent rows of A.] The 
g-inverses of B and C are given by (14) and (15) above.  Then A has 
a unique left identity IL and a unique right identity I being given by 

IL = BB
+ 

+ 
I = f c iR   L L, 

such that ILA = A, and AIR = A. The proof follows from the fact that 

each column of A is a linear combination of the columns of B, and that 
each row of A is a linear combination of the rows of C. 

F. Existence of a Unique G-inverse of a General Matrix 

1. An Observation;  For any matrix A, there is a unique matrix 

A , which has its rows and columns in the row space and column space of 

A , and also satisfies the equations, 

4* 

AA = I    and A+A = I L R- 

19 



4*        + 
It can be verified that for B and C, the matrices B and C satisfy the 
above requirements. 

2.  A+ in 
G being given by 

From the above. 

t t 2.  A in General. To get A in general, we introduce the matrix 

G = B+ A C+ . 

B G C = A . 

+ 
It may be noted that G is of rank r. We finally define A as 

t   t -1 t 
AT = CTG  BT  . 

6 + 
(See Greville for uniqueness of A .) 

V.  LINEAR HYPOTHESIS MODEL OF LESS THAN THE FULL RANK 

A.  The Problem of Estimation 

The general linear hypothesis model introduced in equation (2) is 
of full rank, where Rank (X) = p.  The model will be said to be of less 
than the full rank, when Rank (X) = r<p. Most of the problems in 
Design of Experiments are characterized by models of less than the full 
rank.  Both under Case l(permitting the maximum likelihood estimation 
procedure) and under Case 2(giving the least squares estimates) the normal 
equations are obtained as 

(X'X)i = X'x. • (16) 

Since Rank (X) = r, r<p. Rank of [X'X] is also r.  Hence (X'X)-1 does 
not exist, as X'X is of dimension pxp. However, we can still solve the 
equations using the first g-inverse of X'X = S introduced earlier, and 
express the general solution for | as 

I =  S'X'y + (I-H)£ (17) 

where H = S~S. 

"2 2 
The least squares estimate o of a , and the maximum likelihood 

"2    2 
estimate a of a (adjusted for the bias) are the same, being given by 

°2  = nb [Cl-XjO'Cz-xi)] - -7 [y'y - i'x'y]       (18) 

where $_ represents any solution of equation (16) given above in (17). 
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jlfoiM** 

Since Rank (S) = r, it is not possible to provide a unique esti- 
mate for each element of 3^ However, it is possible to provide a best 
(in the sense of minimum variance) and unbiased estimate of an estimable 
linear function of the elements of £. It should be pointed out that all 
possible linear functions of the elements of 3. are not estimable. If it 
were so, every element of $_ would have been estimable. There are many 
equivalent, necessary and sufficient, condition^ that would make a linear 
function of the parameters such as >_ ^ (where ^ is a row vector of 
constants) estimable. We provide below a few of such necessary and suffi- 
cient conditions. For further details, one may refer to Graybill8. 

A linear combination of the parameters, X  3_, is estimable, if and 
only if: 

i 

1 . A_ is a row vector of X, or a linear combination of the row 
t 

vectors of X.  In other words, \_   is in the row space of X. 

2 . The equations ST_ = X  are consistent, where S = X'X. That is, 

a solution r exists for the equations. 

• ii 
3.X is of the form X    = X H, where H = S S, and S" is the first 

g-inverse of S = X'X, that is, the g-inverse that satisfies only 

the condition SS'S = S. 

B.  On the Estimate, X_ 3^ 

Although the normal equations (16) will have infinitely many solu- 

tions for g implying that $_ is not unique, the estimate X 3 of the 
i i^   

estimable function ^ 3. is unique. Also, A 3. is unbiased, which can be 
shown using the first g-inverse which is more general than the unique 
g-inverse. 

i' _   i 
1.  Unbiased:   E[X 3]  = E[X  (S"X ^ +  (I-H)z)] 

=  E^'s'x'^; +   (X'-X'H)   zj 

= E[X S"X y]  + 0,  since X*  = X'H 

= X s"x'x3_ = xVs3_ 

= X'H 3. 

= x's . 
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2- upique;: Let Rank (Xl = r.  Let it be possible to rearrange the 
columns 61  X with a corresponding rearrangement of the elements of g 
in such a manner that the first r columns of X, denoted X., be independent, 
Partitioning X as [X,:X2], we have 

[X X] 0 - 

x1x1 x1x2 
i = = S3 = 

Sll I S12  1  

S21 [ S22 
- 

3 pp-r 
_ 

r '"i V 

_   J 

xk X2X1 
_ 

— "T-- 

where Rank (S,,) = r, 6 denotes the first r elements of 3, and X,y-, 

the first r elements of X y. Application of the "sweep-out" procedure 
would reduce the above equation to 

sii; si^ 

0,0 

—r 

-p-r 

xi>: 

J 
Applying the sweep-out procedure still further, we should have 

fl     IS* 3,-1 I   r   ,     11    12 

0     i 

That  is. 

—r 

-J L^p-rj 

SjJ(X^y)1 

I    I   H. " r  ,     12 Tir 

L-p-r J 

;11U s^cx,/)- 

L     ^ 

—r 

L%-rJ 

su«ii) 
~l 

(19) 

,-1 
Since S^CXjy)   is unique,   the particular solution given in  (19) 

is unique. 
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Hence, the estimate X &_ reduces to 

A_ 3. = X_ S"X y + X. (I-H) z = X Vx'y 

where S X y is the particular solution. The above reduces to X S^CX.y), 
i ,    ,  .  ,    — r 11  1— 

where ^ represents the first r elements of X . X S JfX^y) is unique. 

C.  Variance of the Estimate X 3 

V(X  6.)   = V(X S"X y) 

=   (^ S"x'x S"x)a2,       since  (S")'   =   (S*)" = S" 

=   a's'S S~X)a2    =     [xVaVs/la2 

=   [^'s'Cx'^'la2    =     (xVxJa2   . (20) 

We have seen above that the estimate X B reduces to Cx'sJ* X,' y) 
, ^   —r 11 1 ^-J 

Hence, the variance of X £ will reduce to 

[ar SjJ xp   CXr S^ xp   ]aZ 

=   (Xr S"} Xj Xj SjJ X^a2 

:=
 fA.r ^ii A.r)

CT   which is unique. 

"2 
D.  On the Estimate a Which is Unique and Unbiased 

While the normal equations (16) will provide infinitely many 
" ^2 

solutions for 0^ the estimate a is unique, although it contains g. 

a    is given by 

^2   1   '   *•  i 
a = ^ III- $ * £     • (21) 

In equation (21), ^ X y = (y X)B is unique, since (y'x)^ is of the 

form X 3, where X is a combination of the row vectors of X and thus 
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A_ P^ is estimable with a unique estimate A_ ^ =  Qf X) (X X)"X y.    Hence 

(21)  reduces to 

= ^ nb") [xe + i]'[I " xs"x^  [xi + SJ 

= ( ^-D^'X'CI - XS'X^Xg + 2elci - xs'x^xe + £(1 - XsV)^] 

=  (^I7)[3'(X,X - X,XS"X,X)^+ 2el(I  - XS'x'jXB + e'(I   - XS'x')^] 

The first component of the above expression is 0. If we take expec- 
tation of the remaining terms, the second term will be 0. The expec- 
tation of the third term which is a quadratic form in e with mean 

2 — 

0 and variance a I will be equal to (by a well known theorem, see [8]). 

a2 Trace [I - X sV] 

= a2 (n - Trace X S'x') 

2 -    2 
= a (n - Trace S S ) = a (n - Trace H) 

2 r = a (n-r) . 

"2 
Hence, the estimate a is unbiased. 

E.  Scheffe's Theorem 

Scheffe's theorem as given in (8) will reduce, when Rank (X) = r, to 

J -:SaJ<i{.<J + 3aJ , (22) 

2 
where S = [qF       ], q < r. The change of (n-p) to (n-r) should 

be noted.  It should also be noted that ^ is now of the form X g, where 
ii   

X = X H.  In the light of what has been provided in this section, 

< = (VnVcr2. 

In Design of Experiments, the function ^ = X_ 6_ is often required 
to be of the form of a contrast, and we may be interested in all 
possible contrasts which are mutually orthogonal. 
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A contrast among the parameters is defined to be a linear function 

of the parameters, *    e.g., such that I    c. = 0. 
l-l i=l 

Two contrasts ^ = £ e.g., ^9 = £ d.g. are said to be ortho- 
i«l * 1 *     i-1 x 1 

gonal, if and only if | c.d. = 0. 
i=l 1 1 

If we are interested in all possible contrasts which are mutually- 
orthogonal, q will change to (r-1), because we can only think of (r-l) 
mutually othogonal contrasts from a space of rank r. 

If a set of q linear functions A3, where A is of dimension qxp, 

are individually estimable, their linear compound $ = Z A&_,  where I 
is a qxl column vector of constants, will also be estimable. The ' 

variance of (}> will be given by 

a| = o2[i^l),  S" (A'A)]. (23) 

Hence, we may also have an analog of the formula given in (9). 

It may be noted that if one is interested in contrasts of the 

type (3^^ - 3^), then one may use the confidence intervals given by 

Tukey (see Scheffe and Graybill ), as such intervals would give shorter 
lengths. 
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F. An Illustration 

We provide below a simple example illustrating the use of Scheffes 
theorem as given in (22). The example is drawn from an experiment in which 
it was desired to find the contributions of three factors represented by 
$1,  32 and B_. Y = X3 is obtained as 

X3   =    Y 

Measurements 

1 1 
■ 

7.8  , 

1 1 8.0  j 

-1 0 *2 0.8 

-1 0 V 0.4 

The 4x3 design matrix X is of rank 2. Hence, n=4, r=2, p=3. 

For the normal equations S3 = X Y, we have 

r 0 

0 

2 

3. 

LB3. 

;— —1 

17 0 

1 14 6 

15 8 

The first g-inverse of S is obtained as 

- 1 
4 0 0 1     0 1 

2 

0 1 
4 0 and H ■ . S"S  = 0     1 1 

2 
1 

'  2  " 
1 
2 1 > 0    0 0 

The particular solution is obtained as 

4.25 

3 = BCX'Y) =  3.65 

0 
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An estimable parametric function will obviously be given by x' = [1 0 -], 

as it satisfied X = X H. 

Hence, X g = Uf 4.25 
L         J 3.65 

0 

= 4.25 = ^ 

Again, a is estimated by 

H^ [Y Y - g X Y] 

= j  [125.64 - 125.54] 

= .05 . 

Taking q = 2 and a = .05, we have  qFa. ^^ = qFa.2j2 = S
2 = 2 x 19.00 

= 38.00, S = 6.16, and Var (J) = Var (x'g) = aV Sljx = a2/4 
r ll r 

Substituting .05 for a , we have, for Var (Vg) = .0125. Hence the 95 

percent confidence bounds are given by [4.25 ± 6.16 (.11)] ■♦ (3.57, 4.93). 

In the above, X g is of the form g1 + g3/2. Depending on the 

necessity, we could also work with the estimable functions, such as 

g2 - g., g + g + g  etc. 
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